

AIRLINQ<sup>®</sup> - DIGITAL BMS

BMS module for LONWORKS®

Amvent Version 3.0 January, 2019 Airling® BMS Module Version 5.0

Programming the Airling  $^{\circ}$  BMS module for LONWORKS  $^{\circ}$ 

Featuring the following objects

- UFPTnodeObject (0)
- UFPTairHandlingUnit (8500)
- SFPToccupancySensor (1060)
- SFPTco2Sensor (1070)
- SFPThvacRelativeHumiditySensor[2] (1050)
- SFPThvacTempSensor[3] (1040)

In compliant with present LONMark® Functional Profiles.

NB! This manual must be read before programming the Airling<sup>®</sup> air handling unit. Compliance with the manual ensures correct use of this product.

NB! The manufacturer cannot be held liable for damage arising from use in contravention of these instructions.

NB! The manufacturer reserves the right to make changes without notice.

NB! This guide relates to the Airling® unit it accompanies plus all equipment.

# Table of Contents

| 1. | 0ve          | Overview5                                     |    |  |  |  |  |  |  |
|----|--------------|-----------------------------------------------|----|--|--|--|--|--|--|
| 2. | Fun          | Functional-Block Details                      |    |  |  |  |  |  |  |
| З. | Det          | Detailed Variable Description                 |    |  |  |  |  |  |  |
| 4. | Noc          | leObject - Optional Network Variables         | 14 |  |  |  |  |  |  |
| 4  | 4.1.         | Night Cooling IT Setpoint                     |    |  |  |  |  |  |  |
| 4  | I.2.         | Night Cooling High Limit                      |    |  |  |  |  |  |  |
| 4  | ł.3.         | Night Cooling Low Limit                       |    |  |  |  |  |  |  |
| 4  | I.4.         | Night Cooling Flow Setpoint                   |    |  |  |  |  |  |  |
| 4  | I.5.         | Control Basic Parameter Settings              |    |  |  |  |  |  |  |
| 4  | I.6.         | Delta Absolute Humidity Minimum A-Coefficient |    |  |  |  |  |  |  |
| 4  | I.7.         | Delta Absolute Humidity Minimum B-Coefficient |    |  |  |  |  |  |  |
| 4  | I.8.         | Delta Absolute Humidity Minimum C-Coefficient |    |  |  |  |  |  |  |
| 4  | ł.9.         | Delta Absolute Humidity Minimum A-Coefficient |    |  |  |  |  |  |  |
| 4  | I.10.        | Delta Absolute Humidity Minimum B-Coefficient |    |  |  |  |  |  |  |
| 4  | I.11.        | Delta Absolute Humidity Maximum C-Coefficient |    |  |  |  |  |  |  |
| 4  | I.12.        | Automatic Operation Flow Setpoint             |    |  |  |  |  |  |  |
| 4  | I.13.        | System Alarm                                  | 20 |  |  |  |  |  |  |
| 4  | I.14.        | System Condition                              |    |  |  |  |  |  |  |
| 4  | I.15.        | Control Basic Settings Output                 | 21 |  |  |  |  |  |  |
| 4  | I.16.        | Filter Remaining Service Life                 |    |  |  |  |  |  |  |
| 4  | I.17.        | Actual Flow Setpoint                          |    |  |  |  |  |  |  |
| 4  | I.18.        | Airmaster Controller Software Version         |    |  |  |  |  |  |  |
| 4  | I.19.        | CP File Directory Address                     |    |  |  |  |  |  |  |
| 5. | Noc          | leObject – Configuration Properties           | 24 |  |  |  |  |  |  |
| 5  | 5.1.         | Device Major Version                          | 24 |  |  |  |  |  |  |
| 5  | 5.2.         | Device Minor Version                          | 24 |  |  |  |  |  |  |
| 6. | Airl         | Handling Unit - Mandatory Network Variables   | 25 |  |  |  |  |  |  |
| 6  | 5.1.         | Space Temperature Input                       |    |  |  |  |  |  |  |
| 6  | 5.2.         | Room Temperature Output                       |    |  |  |  |  |  |  |
| 6  | 5.3.         | System Operating Mode Output                  |    |  |  |  |  |  |  |
| 6  | 5.4.         | Inlet Air Temperature Setpoint Output         |    |  |  |  |  |  |  |
| 6  | 5.5.         | Inlet Temperature Output                      |    |  |  |  |  |  |  |
| 7. | Air          | Handling Unit - Optional Network Variables    |    |  |  |  |  |  |  |
| 7  | '.1.         | Application Mode Input                        |    |  |  |  |  |  |  |
| 7  | '.Z.         | Automatic Operation IT Setpoint               |    |  |  |  |  |  |  |
| 7  | '.3.         | Occupancy Sensor Input                        |    |  |  |  |  |  |  |
| 7  | '.4.         | Automatic Operation CO2 Input                 |    |  |  |  |  |  |  |
| 7  | '.5.         | Actual Inlet Temperature Setpoint Output      |    |  |  |  |  |  |  |
| 7  | '.6.         | Outside Air Temperature Output                |    |  |  |  |  |  |  |
| 7  | '.7.         | Evaporator Temperature Output                 |    |  |  |  |  |  |  |
| 7  | <b>'</b> .8. | Exhaust Air Temperature Output                |    |  |  |  |  |  |  |

| 7   | .9.                          | Comfort Heater Percent Output               | 32 |  |  |  |
|-----|------------------------------|---------------------------------------------|----|--|--|--|
| 7   | .10.                         | Comfort Heater Percent Output               |    |  |  |  |
| 7   | .11.                         | Comfort Cooling Percent Output              |    |  |  |  |
| 7   | .12.                         | Pre Heater Percent Output                   | 33 |  |  |  |
| 7   | .13.                         | Supply Air Flow Output                      | 34 |  |  |  |
| 7   | .14.                         | Extraction Air Flow Output                  |    |  |  |  |
| 7   | .15.                         | Total Power Consumption Output              | 35 |  |  |  |
| 8.  | Air ⊦                        | landling Unit - Configuration Properties    | 35 |  |  |  |
| 8   | .1.                          | Send Heartbeat (Mandatory)                  | 35 |  |  |  |
| 8   | .2.                          | Occupancy Temperature Setpoints (Mandatory) | 36 |  |  |  |
| 8   | .3.                          | HVAC Unit-Type Indentifier (Mandatory)      | 36 |  |  |  |
| 8   | .4.                          | Location Label (Optional)                   | 37 |  |  |  |
| 8   | .5.                          | High Room Temperature Hi Limit (Optional)   |    |  |  |  |
| 8   | .6.                          | High Room Temperature Low Limit (Optional)  |    |  |  |  |
| 8   | .7.                          | PIR Hold Time (Optional)                    | 38 |  |  |  |
| 8   | .8.                          | CO2 Limits (Optional)                       | 39 |  |  |  |
| 8   | .9.                          | Receive Heartbeat (Optional)                | 39 |  |  |  |
| 9.  | 9. Power-Up State            |                                             |    |  |  |  |
| 10. | 5                            |                                             |    |  |  |  |
| 11. | I. Additional Considerations |                                             |    |  |  |  |

# 1 Overview

This document describes the profile for the user defined Air Handling Unit Controller object (AHU Object), and the user defined Node Object.

These two user defined objects in combination to several Sensor objects enable LON® control and supervision of the complete Air Handling Unit (AHU).

Implemented variables are described in this document.



Figure 2 Node Concept as outlined to the LON® network

# 2. Functional-Block Details

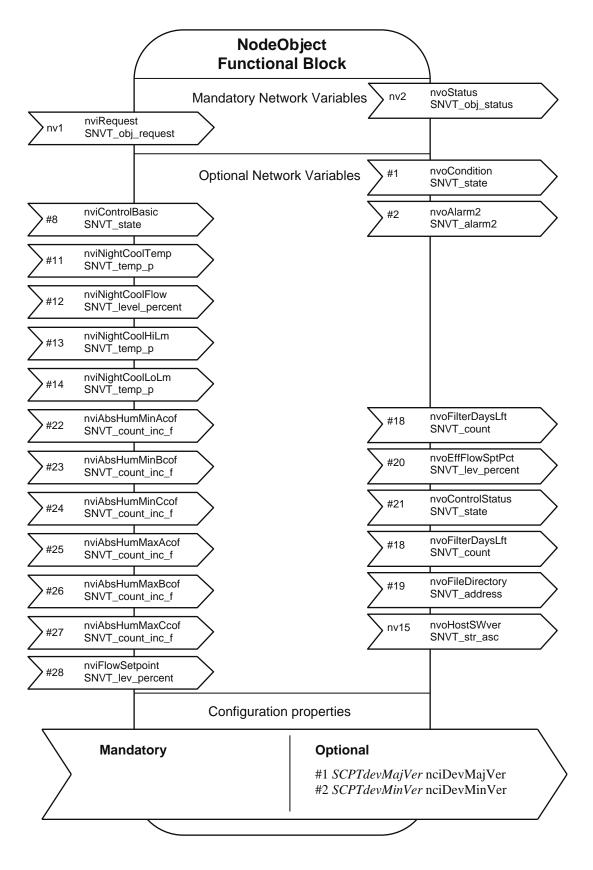



Figure 9 UFPTnodeObject (0) Functional-Block Details

## Table 1 Variable list, NodeObject

| Man/<br>Opt | LON <sup>®</sup> var Name | RcvHtB<br>SndHtB | SNVT/SCPT        | FPT<br>NV# | Class    | BMS Name                                 |
|-------------|---------------------------|------------------|------------------|------------|----------|------------------------------------------|
| 0           | nciDevMajVer              | -                | SCPTdevMajVer    | #1         | ReadOnly |                                          |
| 0           | nciDevMinVer              | -                | SCPTdevMinVer    | #2         | ReadOnly |                                          |
| М           | nviRequest                | -                | SNVT_obj_request | 1          | RAM      |                                          |
| М           | nvoStatus                 | No               | SNVT_obj_status  | 2          |          |                                          |
| 0           | nviAbsHumMaxAcof          | No               | SNVT_count_inc_f | #25        | EEPROM   | Absolute humidity Max. A Coefficient     |
| 0           | nviAbsHumMaxBcof          | No               | SNVT_count_inc_f | #26        | EEPROM   | Absolute humidity Max. B Coefficient     |
| 0           | nviAbsHumMaxCcof          | No               | SNVT_count_inc_f | #27        | EEPROM   | Absolute humidity Max. C Coefficient     |
| 0           | nviAbsHumMinAcof          | No               | SNVT_count_inc_f | #22        | EEPROM   | Absolute humidity Min. A Coefficient     |
| 0           | nviAbsHumMinBcof          | No               | SNVT_count_inc_f | #23        | EEPROM   | Absolute humidity Min. B Coefficient     |
| 0           | nviAbsHumMinCcof          | No               | SNVT_count_inc_f | #24        | EEPROM   | Absolute humidity Min. C Coefficient     |
| 0           | nviControlBasic.bit0      | No               | SNVT_state       | #8         | EEPROM   | Allow Start by Local External Start      |
|             | nviControlBasic.bit1      | -                | SNVT_state       |            |          | Allow Start by Local PIR                 |
|             | nviControlBasic.bit2      | -                | SNVT_state       |            |          | Allow Start by Local CO2                 |
|             | nviControlBasic.bit3      | -                | SNVT_state       |            |          | Allow Start by Local Timer               |
|             | nviControlBasic.bit4      | -                | SNVT_state       |            |          | Allow Start by Local Panel               |
| 0           | nviFlowSetpoint           | No               | SNVT_lev_percent |            | EEPROM   | Automatic Operation: Flow setpoint       |
| 0           | nviNightCoolFlow          | No               | SNVT_lev_percent | #12        | EEPROM   | Night Cooling: Flow setpoint             |
| 0           | nviNightCoolHiLm          | No               | SNVT_temp_p      | #13        | EEPROM   | Night Cooling: High limit                |
| 0           | nviNightCoolLoLm          | No               | SNVT_temp_p      | #14        | EEPROM   | Night Cooling: Low limit                 |
| 0           | nviNightCoolTemp          | No               | SNVT_temp_p      | #11        | EEPROM   | Night Cooling: IT setpoint               |
| 0           | nvoAlarm2                 | No               | SNVT_alarm2      | #2         |          | System Alarm                             |
| 0           | nvoCondition              | No               | SNVT_state       | #1         |          | System Condition                         |
| 0           | nvoControlStatus.bit0     | No               | SNVT_state       | #21        |          | External Start output                    |
| 0           | nvoEffFlowSptPct          | Yes              | SNVT_lev_percent | #20        |          | Actual Flow Setpoint                     |
| 0           | nvoFileDirectory          | -                | SNVT_address     | #19        |          |                                          |
| 0           | nvoFilterDaysLft          | No               | SNVT_count       | #18        |          | Filter, remaining service life           |
| 0           | nvoHostSWver              | No               | SNVT_str_asc     | #15        | 1        | Software Version                         |
|             |                           |                  |                  |            |          | UTC seconds since 01-01-2008<br>00:00:00 |

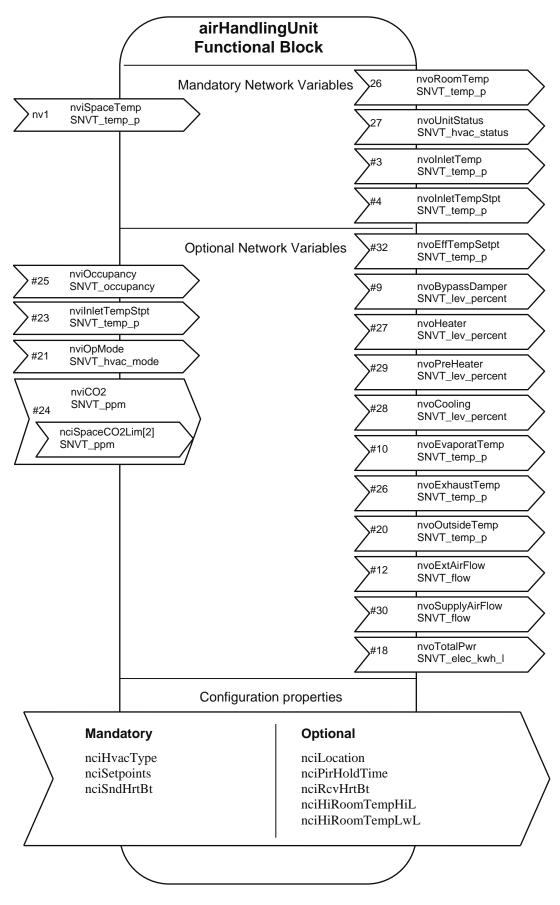


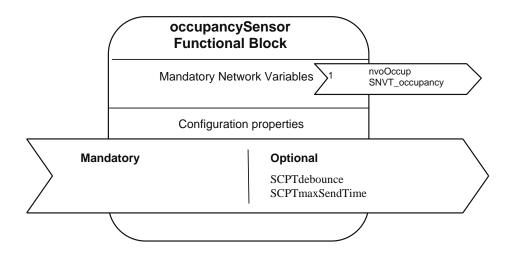

Figure 10 UFPTairHandlingUnit (8500) Functional-Block Details

## Table 2 Variable list, airHandlingUnit Object

| Man/<br>Opt * | LON <sup>®</sup> var Name | RcvHtB<br>SndHtB | SNVT/SCPT        | FPT<br>NV# | Class    | BMS Name                                   |
|---------------|---------------------------|------------------|------------------|------------|----------|--------------------------------------------|
| 0             | nciCO2Limit[1]            | -                | SNVT_ppm         | #4         | EEPROM   | CO2, Minimum                               |
| 0             | nciCO2Limit[2]            | -                | SNVT_ppm         | #4         | EEPROM   | CO2, Maximum                               |
| 0             | nciHiRoomTempHiL          | -                | SNVT_temp_p      | #2         | EEPROM   | High Room Temperature, High limit          |
| 0             | nciHiRoomTempLwL          | -                | SNVT_temp_p      | #1         | EEPROM   | High Room Temperature, Low limit           |
| М             | nciHvacType               | -                | SCPThvacType     | 20         | ReadOnly |                                            |
| 0             | nciLocation               | -                | SCPTLocation     | #7         | EEPROM   |                                            |
| 0             | nciPirHoldTime            | -                | SNVT_time_sec    | #3         | EEPROM   | PIR Afterrun Time                          |
| 0             | nciRcvHrtBt               | -                | SCPTmaxRcvTime   | #6         | EEPROM   |                                            |
| М             | nciSetpoints              | -                | SCPTsetPnts      | 2          |          |                                            |
| М             | nciSndHrtBt               | -                | SCPTmaxSendTime  | 1          | EEPROM   |                                            |
| 0             | nviCO2                    | Yes              | SNVT_ppm         | #24        | RAM      | Automatic Operation: CO2 input             |
| 0             | nvilnletTempStpt          | No               | SNVT_temp_p      | #23        | RAM      | Automatic Operaion: IT setpoint            |
| 0             | nviOccupancy              | Yes              | SNVT_occupancy   | #25        | RAM      |                                            |
| 0             | nviOpMode                 | Yes              | SNVT_hvac_mode   | #21        | RAM      | Automatic Operation: Start                 |
| М             | nviSpaceTemp              | -                | SNVT_temp_p      | 1          | RAM      |                                            |
| 0             | nvoBypassDamper           | Yes              | SNVT_lev_percent | #9         |          | Bypass Damper percent                      |
| 0             | nvoCooling                | Yes              | SNVT_lev_percent | #28        |          | Comfort Cooling percent                    |
| 0             | nvoEffTempSetpt           | Yes              | SNVT_temp_p      | #32        |          | Actual Inlet Temperature setpoint          |
| 0             | nvoEvaporatTemp           | Yes              | SNVT_temp_p      | #10        |          | Evaporator Temperature                     |
| 0             | nvoExhaustTemp            | Yes              | SNVT_temp_p      | #26        |          | Exhaust Temperature at Ventilation<br>Unit |
| 0             | nvoExtAirFlow             | Yes              | SNVT_flow        | #12        |          | Extraction Flow                            |
| 0             | nvoHeater                 | Yes              | SNVT_lev_percent | #27        |          | Comfort Heater percent                     |
| М             | nvolnletTemp              | Yes              | SNVT_temp_p      | #3         |          | Inlet Temperature                          |
| М             | nvolnletTempStpt          | Yes              | SNVT_temp_p      | #4         |          |                                            |
| 0             | nvoOutsideTemp            | Yes              | SNVT_temp_p      | #20        |          | Outside Temperature                        |
| 0             | nvoPreHeater              | Yes              | SNVT_lev_percent | #29        |          | Pre Heater percent                         |
| М             | nvoRoomTemp               | Yes              | SNVT_temp_p      | 26         |          | Room Temperature                           |
| 0             | nvoSupplyAirFlow          | Yes              | SNVT_flow        | #30        |          | Supply Flow                                |
| 0             | nvoTotalPwr               | Yes              | SNVT_elec_kwh_l  | #18        | 1        | Energy Meter                               |
| М             | nvoUnitStatus             | Yes              | SNVT_hvac_status | 27         |          | System Operating Mode                      |

## \*) M = mandatory, O = optional

Some of the CP's are implemented as Network Input Config for optimal availability by non-LNS tools.



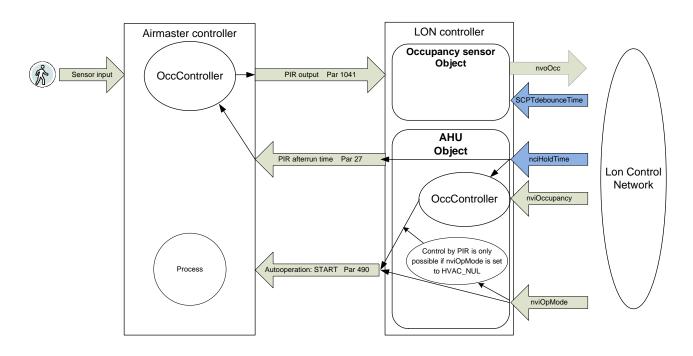


Figure 11 SFPToccupancySensor (1060) Functional-Block Details

Table 3 Variable list, occupancySensor Object

| Man/<br>Opt * | LON <sup>®</sup> var Name | RcvHtB<br>SndHtB | SNVT / SCPT     | FPT<br>NV# | Class  | BMS Name   |
|---------------|---------------------------|------------------|-----------------|------------|--------|------------|
| М             | nvoOccup                  | Yes              | SNVT_occupancy  | 1          |        | PIR output |
| 0             | nciDebounce               | -                | SCPTdebounce    |            | EEPROM |            |
| 0             | nciHeartBeat              | -                | SCPTmaxSendTime |            | EEPROM |            |

The purpose of the occupancySensor object is an opportunity to use the unit wired PIR sensor for other services in the building. The scheme below shows the

mechanism, as well as the possibility to control the AHU from a LON® based PIR sensor.



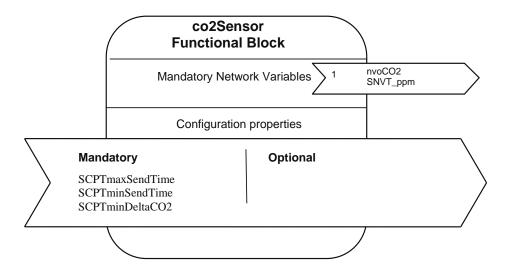



Figure 12 SFPTco2Sensor (1070) Functional-Block Details

| Man/ | LON <sup>®</sup> var Name | RcvHrtBt/ | SNVT/SCPT       | FPT | Class  | BMS Name   |
|------|---------------------------|-----------|-----------------|-----|--------|------------|
| Opt  |                           | SndHrtBt  |                 | NV# |        |            |
| М    | nvoCO2                    | Yes       | SNVT_ppm        | 1   |        | CO2 output |
| М    | nciMinSendTime            | -         | SCPTminSendTime |     | EEPROM |            |
| М    | nciMaxSendTime            | -         | SCPTmaxSendTime |     | EEPROM |            |
| М    | nciCO2MinDelta            | -         | SCPTminDeltaCO2 |     | EEPROM |            |

The purpose of the CO2Sensor object is an opportunity to use the Air Quality Sensor for other services in the building.

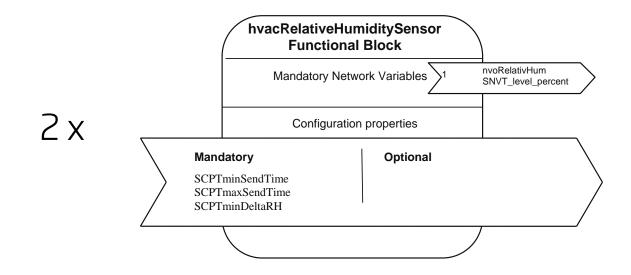



Figure 13 SFPThvacRelativeHumiditySensor (1050) Functional-Block Details

| Fb<br>Idx | M<br>/O | LON <sup>®</sup> var Name | R∨HtBt/<br>SdHtBt | SNVT/SCPT        | FPT<br>NV# | Class  | BMS Name               |
|-----------|---------|---------------------------|-------------------|------------------|------------|--------|------------------------|
| 0         | М       | nciRHMinDelta_1           | -                 | SCPTminDeltaRH   |            | EEPROM |                        |
| 1         | М       | nciRHMinDelta_2           | -                 | SCPTminDeltaRH   |            | EEPROM |                        |
| 0         | М       | nciRHmnSndTim_1           | -                 | SCPTminSendTime  |            | EEPROM |                        |
| 1         | М       | nciRHmnSndTim_2           | -                 | SCPTminSendTime  |            | EEPROM |                        |
| 0         | М       | nciRHMxSndTim_1           | -                 | SCPTmaxSendTime  |            | EEPROM |                        |
| 1         | М       | nciRHMxSndTim_2           | -                 | SCPTmaxSendTime  |            | EEPROM |                        |
| 0         | М       | nvoRelativHum_1           | Yes               | SNVT_lev_percent | 1          |        | Rel. Humidity, outside |
| 1         | М       | nvoRelativHum_2           | Yes               | SNVT_lev_percent | 1          |        | Rel. Humidity, inside  |

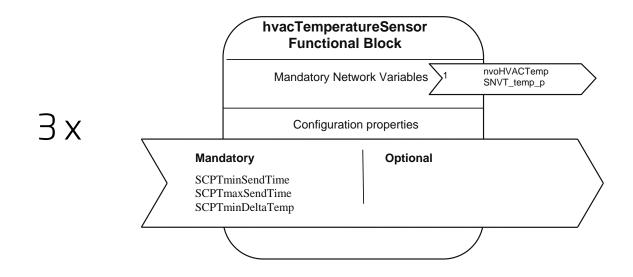



Figure 14 SFPThvacTempSensor (1040) Functional-Block Details

| Fb<br>Idx | M<br>/0 | LON® var Name    | RvHtBt/<br>SdHtBt | SNVT / SCPT      | FPT<br>NV# | Class  | BMS Name                                   |
|-----------|---------|------------------|-------------------|------------------|------------|--------|--------------------------------------------|
| 0         | М       | nciTempMnDelta_1 | -                 | SCPTminDeltaTemp |            | EEPROM |                                            |
| 1         | М       | nciTempMnDelta_2 | -                 | SCPTminDeltaTemp |            | EEPROM |                                            |
| 2         | М       | nciTempMnDelta_3 | -                 | SCPTminDeltaTemp |            | EEPROM |                                            |
| 0         | М       | nciTempMnSndTm_1 | -                 | SCPTminSendTime  |            | EEPROM |                                            |
| 1         | М       | nciTempMnSndTm_2 | -                 | SCPTminSendTime  |            | EEPROM |                                            |
| 2         | М       | nciTempMnSndTm_3 | -                 | SCPTminSendTime  |            | EEPROM |                                            |
| 0         | М       | nciTempMxSndTm_1 | -                 | SCPTmaxSendTime  |            | EEPROM |                                            |
| 1         | М       | nciTempMxSndTm_2 | -                 | SCPTmaxSendTime  |            | EEPROM |                                            |
| 2         | М       | nciTempMxSndTm_3 | -                 | SCPTmaxSendTime  |            | EEPROM |                                            |
| 0         | М       | nvoHVACTemp_1    | Yes               | SNVT_temp_p      | 1          |        | Condenser Temperature                      |
| 1         | М       | nvoHVACTemp_2    | Yes               | SNVT_temp_p      | 1          |        | Outside Temperature at<br>Ventilation Unit |
| 2         | М       | nvoHVACTemp_3    | Yes               | SNVT_temp_p      | 1          |        | General Purpose<br>Temperature             |

# 3. Detailed Variable Description

In the following only variables are described, which are specific in relation to this document purpose. For variables which are belonging to the LONMARK® objects SFPToccupancySensor (1060), SFPTco2Sensor (1070),

SFPThvacRelativeHumiditySensor (1050),

SFPThvacTempSensor (1040), and the mandatory nv's for the NodeObject, please refer to the

LONMARK<sup>®</sup> International homepage:

<u>www.lonmark.org</u> where the respective Functional Profiles are available for downloads. 4. NodeObject - Optional Network Variables

## 4.1. Night Cooling IT Setpoint

network input sd\_string("Night Cooling IT setpoint") eeprom SNVT temp p nviNightCoolTemp = 1600;

#### Purpose

This input network variable is used to set the Fixed Inlet Temperature during Night Cooling.

## BMS Group

Optional Setting.

## Valid Range

The valid range is 0°C to 50°C. The value 0x7FFF=+327.67°C will be handled as an invalid value.

#### Default Value

Default Value is 16,00°C. The initial value will be retrieved from the AHU controller and loaded into the variable after a reset of the node. An update of this variable will be maintained in the AHU controller non volatile memory as well.

#### Storage Class

This network variable is to be treaded as a configuration variable for infrequent update, and will be maintained when node is reset.

**Configuration Consideration** None specified.

# 4.2. Night Cooling High Limit

network input sd\_string("Night Cooling High limit") eeprom SNVT\_temp\_p nviNightCoolHiLm = 2600;

## Purpose

This input network variable is used to set the temperature limit "Daytime temperature to initiate Night Cooling".

## BMS Group

Optional Setting.

## Valid Range

The valid range is 0°C to 50°C. The value 0x7FFF=+327.67°C will be handled as an invalid value.

## Default Value

Default Value is 26,00°C. The initial value will be retrieved from the AHU controller and loaded into the variable after a reset of the node. An update of this variable will be maintained in the AHU controller non volatile memory as well.

#### Storage Class

This network variable is to be treaded as a configuration variable for infrequent update, and will be maintained when node is reset.

**Configuration Consideration** None specified.

## 4.3. Night Cooling Low Limit

network input sd\_string("Night Cooling Low limit") eeprom SNVT\_temp\_p nviNightCoolLoLm = 2300;

#### Purpose

This input network variable is used to set the temperature limit "Daytime temperature to maintain Night Cooling".

#### **BMS** Group

Optional Setting.

#### Valid Range

The valid range is 0°C to 50°C. The value 0x7FFF=+327.67°C will be handled as an invalid value.

#### Default Value

Default Value is 23,00°C. The initial value will be retrieved from the AHU controller and loaded into the variable after a reset of the node. An update of this variable will be maintained in the AHU controller non volatile memory as well.

#### Storage Class

This network variable is to be treaded as a configuration variable for infrequent update, and will be maintained when node is reset.

#### Configuration Consideration

None specified.

# 4.4. Night Cooling Flow Setpoint

network input sd\_string("Night Cooling
Flow setpoint") eeprom SNVT\_lev\_percent
nviNightCoolFlow = 20000;

#### Purpose

This input network variable is used to set the Fixed Airflow during Night Cooling.

#### BMS Group

Optional Setting.

#### Valid Range

The valid range is 0 - 100%. The value 0x7FFF=+327.67% will be handled as an invalid value.

#### Default Value

Default Value is 100%. The initial value will be retrieved from the AHU controller and loaded into the variable after a reset of the node. An update of this variable will be maintained in the AHU controller non volatile memory as well.

#### Storage Class

This network variable is to be treaded as a configuration variable for infrequent update, and will be maintained when node is reset.

#### **Configuration Consideration**

None specified.

## 4.5. Control Basic Parameter Settings

network input sd\_string("Control Basic
parameter settings") eeprom SNVT\_state
nviControlBasic;

#### Purpose

This input network variable is used for basic control settings. Five different Boolean states can be set by the variable.

The following commands are enabled when State is TRUE:

| State.bit0: | Allow Start by External Start |
|-------------|-------------------------------|
| State.bit1: | D-BMS Start by PIR            |
| State.bit2: | D-BMS Start by CO2            |
| State.bit3: | D-BMS Start by built in Timer |
| State.bit4: | D-BMS Start by Panel          |

#### BMS Group

Control Basic.

#### Valid Range

When using this parameter be aware of the bit order. Each bit of this 16bit variable is presented as a State parameter. State.bit0 is the MSB in the variable.

#### Default Value

- State.bit0: Allow Start by External Start Default: TRUE
- State.bit1: D-BMS Start by PIR Default: TRUE
- State.bit2: D-BMS Start by CO2 Default: TRUE
- State.bit3: D-BMS Start by built in Timer Default: FALSE
- State.bit4: D-BMS Start by Panel Default: TRUE

The initial value will be retrieved from the AHU controller and loaded into the variable after a reset of the node. An update of this variable will be maintained in the AHU controller non volatile memory as well.

#### Storage Class

#### EEPROM

**Configuration Consideration** None specified.

# 4.6. Delta Absolute Humidity Minimum A-Coefficient

network input sd\_string("Delta absolute humidity minimum A-coefficient") eeprom SNVT\_count\_inc\_f nviAbsHumMinAcof = {0, 0x00, 0, 0x000, 0x0000};

#### Purpose

This input network variable is used to set the Delta absolute humidity minimum A-coefficient.

## BMS Group

Optional Setting.

#### Valid Range

The valid range is -9,999 to +9,999.

#### Default Value

Default Value is 0,0. The initial value will be retrieved from the AHU controller and loaded into the variable after a reset of the node. An update of this variable will be maintained in the AHU controller non volatile memory as well.

#### Storage Class

This network variable is to be treaded as a configuration variable for infrequent update, and will be maintained when node is reset.

## **Configuration Consideration**

None specified.

# 4.7. Delta Absolute Humidity Minimum B-Coefficient

network input sd\_string("Delta absolute humidity minimum B-coefficient") eeprom SNVT\_count\_inc\_f nviAbsHumMinBcof = {0, 0x00, 0, 0x00, 0x0000};

#### Purpose

This input network variable is used to set the Delta absolute humidity minimum A-coefficient.

BMS Group

Optional Setting.

Valid Range The valid range is -9,999 to +9,999.

#### **Default Value**

Default Value is 0,0. The initial value will be retrieved from the AHU controller and loaded into the variable after a reset of the node. An update of this variable will be maintained in the AHU controller non volatile memory as well.

#### Storage Class

This network variable is to be treaded as a configuration variable for infrequent update, and will be maintained when node is reset.

**Configuration Consideration** None specified.

# 4.8. Delta Absolute Humidity Minimum C-Coefficient

network input sd\_string("Delta absolute humidity minimum C-coefficient") eeprom SNVT\_count\_inc\_f nviAbsHumMinCcof = {0, 0x00, 0, 0x000, 0x0000};

#### Purpose

This input network variable is used to set the Delta absolute humidity minimum A-coefficient.

**BMS Group** Optional Setting.

#### Valid Range

The valid range is -99,99 to +99,99.

## Default Value

Default Value is 0,0. The initial value will be retrieved from the AHU controller and loaded into the variable after a reset of the node. An update of this variable will be maintained in the AHU controller non volatile memory as well.

#### Storage Class

This network variable is to be treaded as a configuration variable for infrequent update, and will be maintained when node is reset.

**Configuration Consideration** None specified.

# 4.9. Delta Absolute Humidity Minimum A-Coefficient

network input sd\_string("Delta absolute humidity maximum A-coefficient") eeprom SNVT\_count\_inc\_f nviAbsHumMaxAcof = {0, 0x00, 0, 0x000, 0x0000};

#### Purpose

This input network variable is used to set the Delta absolute humidity minimum A-coefficient.

## BMS Group

Optional Setting.

#### Valid Range

The valid range is -9,999 to +9,999.

#### Default Value

Default Value is 0,0. The initial value will be retrieved from the AHU controller and loaded into the variable after a reset of the node. An update of this variable will be maintained in the AHU controller non volatile memory as well.

#### Storage Class

This network variable is to be treaded as a configuration variable for infrequent update, and will be maintained when node is reset.

**Configuration Consideration** None specified.

# 4.10. Delta Absolute Humidity Minimum B-Coefficient

network input sd\_string("Delta absolute humidity maximum B-coefficient") eeprom SNVT\_count\_inc\_f nviAbsHumMaxBcof = {0, 0x00, 0, 0x000, 0x0000};

#### Purpose

This input network variable is used to set the Delta absolute humidity minimum A-coefficient.

# BMS Group

Optional Setting.

#### Valid Range

The valid range is -9,999 to +9,999.

## Default Value

Default Value is 0,0. The initial value will be retrieved from the AHU controller and loaded into the variable after a reset of the node. An update of this variable will be maintained in the AHU controller non volatile memory as well.

#### Storage Class

This network variable is to be treaded as a configuration variable for infrequent update, and will be maintained when node is reset.

**Configuration Consideration** None specified.

# 4.11. Delta Absolute Humidity Maximum C-Coefficient

network input sd\_string("Delta absolute humidity maximum C-coefficient") eeprom SNVT\_count\_inc\_f nviAbsHumMaxCcof = {0, 0x00, 0, 0x000, 0x0000};

#### Purpose

This input network variable is used to set the Delta absolute humidity minimum A-coefficient.

#### **BMS Group**

Optional Setting.

Valid Range The valid range is -99,99 to +99,99.

## Default Value

Default Value is 0,0. The initial value will be retrieved from the AHU controller and loaded into the variable after a reset of the node. An update of this variable will be maintained in the AHU controller non volatile memory as well.

#### Storage Class

This network variable is to be treaded as a configuration variable for infrequent update, and will be maintained when node is reset.

Configuration Consideration

None specified.

# 4.12. Automatic Operation Flow Setpoint

network input sd\_string("Automatic Operation Flow setpoint") SNVT\_lev\_percent nviFlowSetpoint = 0;

#### Purpose

This input network variable is used to set the Digital BMS airflow in Automatic Operation.

## BMS Group

Control.

## Valid Range

The valid range is 0 - 100%. The value 0x7FFF=+327.67% will be handled as an invalid value.

#### Default Value

Default Value is 0%.

#### Storage Class

This network variable will NOT be maintained when node is reset.

#### Configuration Consideration

None specified.

## 4.13. System Alarm

network output sync sd\_string("System
Alarm") SNVT\_alarm\_2 nvoAlarm2;

#### Purpose

This output network variable is used to report System Alarm status. The reported alarms are presented as structured variables as described below.

The System Alarm variable, which only shows status for one alarm at a time, is typical to be bound to a BMS or SCADA system, where the event driven alarm data is to be stored and handled in an alarm log.

Please refer to the description of SNVT\_alarm2 at <a href="http://types.lonmark.org">http://types.lonmark.org</a>

## Default Value

N/A.

#### Configuration Consideration

This variable should not be polled infrequently since immediate updated may be missed. A bound connection is to be preferred.

#### When Transmitted

This value will be updated immediately in events of alarms update with a timestamp and a sequence number.

#### Default Service Type

There is no default service specified.

# BMS Group

Sysinfo.

## Typical Range

#### Structure

| Alarm type          | Alarm type (alarm type names). Alarm                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | condition reported by this update                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Supported<br>types  | AL_DEBUG [-11] Debug information (not an<br>alarm)<br>AL_NO_CONDITION [0] No alarm condition<br>present<br>AL_TOT_SVC_ALM_1 [2] Total/service interval<br>alarm 1 (component requires service or<br>maintenance)<br>AL_LOW_LMT_CLR_1 [5] Alarm low limit alarm<br>clear 1<br>AL_HIGH_LMT_CLR_1 [7] Alarm high limit<br>alarm clear 1<br>AL_LOW_LMT_ALM_1 [9] Alarm low limit<br>alarm 1<br>AL_HIGH_LMT_ALM_1 [11] Alarm high limit<br>alarm 1<br>AL_ERROR [31] Other error condition |
| Priority level      | Priority level (priority level names). Priority level of the alarm reported by this update                                                                                                                                                                                                                                                                                                                                                                                           |
| Supported<br>levels | PR_NUL [-1] Invalid Value<br>PR_LEVEL_0 [0] Lowest alarm priority level<br>PR_8 [9] HVAC Alarms (BACnet Priority 8)                                                                                                                                                                                                                                                                                                                                                                  |
| Alarm time          | Alarm time (seconds). Alarm time in seconds<br>since 2000-01-01T00:00:00Z (the 0 hour of 1<br>January 2000, Coordinated Universal Time)                                                                                                                                                                                                                                                                                                                                              |
| Milliseconds        | Milliseconds (milliseconds). Alarm time in<br>milliseconds since the second specified by the<br>alarm_time field                                                                                                                                                                                                                                                                                                                                                                     |
| Sequence<br>number  | Sequence number (count). Sequence number<br>for this update. Incremented by one for each<br>update from an alarm source. Wraps to zero<br>after reaching 255. An alarm receiver can use<br>the sequence number to detect missed alarm<br>messages.                                                                                                                                                                                                                                   |
| Description         | Description (array of 22 characters). Alarm description with NUL terminator.                                                                                                                                                                                                                                                                                                                                                                                                         |

## 4.14. System Condition

network output sd\_string("System
Condition") SNVT\_state nvoCondition;

#### Purpose

This output network variable is used to report the System Condition. Tree different Boolean states are used by the variable.

The following conditions are Active when State is TRUE:

| State.bit0: | Low Temp Process<br>Default: FALSE     |
|-------------|----------------------------------------|
| State.bit1: | High Temp Process<br>Default: FALSE    |
| State.bit2: | Condensation Process<br>Default: FALSE |

#### BMS Group

Sysinfo.

#### Typical Range

When reading this parameter be aware of the bit order. Each bit of this 16bit variable is presented as a State parameter. State.bit0 is the MSB in the variable.

## Default Value

N/A.

Configuration Consideration N/A.

#### When Transmitted

The variable is transmitted immediately when its value has changed.

#### Default Service Type

There is no default service specified.

# 4.15. Control Basic Settings Output

network output sd\_string("Control Basic settings") SNVT\_state nvoControlStatus;

#### Purpose

This output network variable is used to report Control status. One Boolean state is used by the variable.

The following input sensor is "ON" when State is TRUE:

State.bit0: Manual Start

Default: FALSE

#### BMS Group

Sensor.

## Typical Range

When reading this parameter be aware of the bit order. Each bit of this 16bit variable is presented as a State parameter. State.bit0 is the MSB in the variable.

# Default Value

N/A.

# **Configuration Consideration** N/A.

#### When Transmitted

The variable is transmitted immediately when its value has changed.

### Default Service Type

## 4.16. Filter Remaining Service Life

network output sd\_string("Filter remaining service life") SNVT\_count nvoFilterDaysLft;

#### Purpose

This output network variable is used to report remaining service life of filters in days.

**BMS Group** Sysinfo.

**Typical Range** The typical range is 0 to 1000.

**Default Value** N/A.

Configuration Consideration N/A.

When Transmitted The variable is transmitted immediately when its value has changed.

**Default Service Type** There is no default service specified. 4.17. Actual Flow Setpoint

network output sd\_string("Actual flow setpoint") SNVT\_lev\_percent nvoEffFlowSptPct;

#### Purpose

This output network variable is used to report the current Flow Setpoint.

## BMS Group

Sysinfo.

*Typical Range* The typical range is 0 to 100%.

**Default Value** N/A.

**Configuration Consideration** N/A.

#### When Transmitted

The variable is transmitted immediately when its value has changed. Additionally, this network variable may also (if configured) be transmitted as a heartbeat output on a regular basis as dictated by the AHU object Maximum Send Time (nciSndHrtBt) configuration value.

#### **Default Service Type**

# 4.18. Airmaster Controller Software Version

network output sd\_string("AirMaster Contr Software Version") SNVT\_str\_asc nvoHostSWver;

### Purpose

This output network variable is used to report the Software release number of the Airmaster controller.

The variable is presented as an ASCII character string.

**BMS Group** Sysinfo.

**Typical Range** N/A.

**Default Value** N/A.

#### Configuration Consideration

This value will be updated no faster than the Minimum Send Time (nciMinOutTm) configuration value, if used (manufacturer-defined).

#### When Transmitted

The variable is transmitted immediately when its value has changed.

## Default Service Type

There is no default service specified.

## 4.19. CP File Directory Address

network output sd\_string("CP FileDirectory Address") SNVT\_address nvoFileDirectory = (SNVT\_address)&FileDirectory;

#### Purpose

This output network variable is used to report the Address for file directory containing descriptors for configuration parameter files.

For more details, see Configuration Properties within the LONMARK® Application-Layer Interoperability Guidelines.

# Typical Range

N/A.

**Default Value** FS\_NUL.

Configuration Consideration N/A.

When Transmitted N/A.

# Default Service Type

5. NodeObject – Configuration Properties

## 5.1. Device Major Version

const SCPTdevMajVer cp\_family
nciDevMajVer;

## Purpose

This configuration property provides the major version number of the LON<sup>®</sup> device. The major version number will be incremented when the network interface for the device changes.

Valid Range The variable is a read only.

**Typical Default Value** N/A.

**Configuration Requirements/Restrictions** None.

SCPT Reference SCPTdevMajVer (165)

# 5.2. Device Minor Version

const SCPTdevMajVer cp\_family
nciDevMajVer;

## Purpose

This configuration property provides the minor version number of the LON® device. The minor version number will be incremented when the network interface remains the same, but the device has a different behavior.

Valid Range The variable is a read only.

**Typical Default Value** N/A.

**Configuration Requirements/Restrictions** None.

SCPT Reference SCPTdevMinVer (166)

# 6. Air Handling Unit - Mandatory Network Variables

## 6.1. Space Temperature Input

network input sd\_string("The controller may use the built in sensor") SNVT\_temp\_p nviSpaceTemp;

#### Purpose

This input network variable is used to connect an external space temperature sensor to the node. It is mandatory to the profile, but it does not have to be bound to a sensor node if the AHU Controller node itself provides a locally wired space temperature sensor. In any case, the nviSpaceTemp has priority if a valid value is present.

## Valid Range

The valid range is -10°C to 50°C. The value 0x7FFF=+327.67°C will be handled as an invalid value.

#### Default Value

Default Value is 0x0000 (=0,00°C). This value will be adopted at power-up.

#### **Configuration Consideration**

This network variable is subject to the receive heartbeat time, nciRcvHrtBt.

# 6.2. Room Temperature Output

network output sd\_string("Room
Temperature") SNVT\_temp\_p nvoRoomTemp;

## Purpose

This output network variable is used to monitor the RT - Room Temperature which the AHU Controller is using for control. It is measured by the build in temperature sensor.

## BMS Group

Sensor.

## Typical Range

The typical range is -50°C to 100°C.

#### Default Value N/A.

**Configuration Considerations** None.

#### When Transmitted

The variable is transmitted immediately when its value has changed. Additionally, this network variable will also be transmitted as a heartbeat output on a regular basis as dictated by the Maximum Send Time (nciSndHrtBt) configuration value.

## Default Service Type

# 6.3. System Operating Mode Output

network output sd\_string("System
Operating Mode") SNVT\_hvac\_status
nvoUnitStatus;

#### Purpose

This output network variable is available to report the AHU Controller status. It combines the operating mode, the capacity of heating and cooling used and an indication if any alarms are present in the object. SNVT\_hvac\_status allows this information to be provided in one network variable.

#### BMS Group

Sysinfo.

#### Valid Range

Mode: The valid range is described in the table below:

-1 = HVAC\_NUL (default value)

0 = HVAC\_AUTO (Started)

4 = HVAC\_NIGHT\_PURGE (Night cooling)

6 = HVAC\_OFF (Stopped)

7 = HVAC\_TEST (Filter Test Running)

9 = HVAC\_FAN\_ONLY (Stopping / Starting)

13 = HVAC\_ECONOMY (Holiday Mode)

15 = HVAC\_CALIBRATE (Filter Calibration)

The value of 'mode' is determined by the values of nviApplicMode, nviOccupancy, and logic in the controller.

| heat_output_primary: | 0-100%, 0x7FFF (INVALID)         |
|----------------------|----------------------------------|
| ncal_output_primary. | $0^{-100/0}, 0^{-111}$ (INVALID) |

heat\_output\_secondary: 0-100%, 0x7FFF (INVALID)

cool\_output: 0-100%, 0x7FFF (INVALID)

in\_alarm: 0 means there is no alarm.

Not 0 means there is an alarm.

0xFF means that alarming is disabled.

## Default Value

| Mode: -1 =             | HVAC_NUL.                  |
|------------------------|----------------------------|
| heat_output_primary:   | 0x7FFF (INVALID)           |
| heat_output_secondary: | 0x7FFF (INVALID)           |
| cool_output:           | 0x7FFF (INVALID)           |
| econ_output:           | 0x7FFF (INVALID)           |
| fan_output:            | 0x7FFF (INVALID)           |
| in_alarm:              | 0 means there is no alarm. |

#### **Configuration Considerations**

None.

#### When Transmitted

This variable is transmitted immediately when its value has changed. Additionally, this network variable will also be transmitted as a heartbeat output on a regular basis as dictated by the Maximum Send Time (nciSndHrtBt) configuration value.

## Default Service Type

# 6.4. Inlet Air Temperature Setpoint Output

network output sd\_string("Ecco
nviInletTempStpt") SNVT\_temp\_p
nvoInletTempStpt;

#### Purpose

This output network variable is used to monitor the Inlet air temperature setpoint as specified by the nvilnletTempSetpt network variable.

**Typical Range** The typical range is 10°C to 35°C.

**Default Value** The default value of SNVT\_temp\_p.

**Configuration Considerations** None.

#### When Transmitted

The variable is transmitted immediately when its value has changed. Additionally, this network variable may also be transmitted as a heartbeat output on a regular basis as dictated by the Maximum Send Time (nciSndHrtBt) configuration value.

#### Default Service Type

There is no default service specified.

# 6.5. Inlet Temperature Output

network output sd\_string("Inlet Temperature") SNVT\_temp\_p nvoInletTemp;

#### Purpose

This output network variable is used to monitor the IT Inlet temperature.

BMS Group Sensor.

*Typical Range* The typical range is 0°C to 100°C.

**Default Value** The default value of SNVT\_temp\_p.

Configuration Considerations

None.

#### When Transmitted

The variable is transmitted immediately when its value has changed. Additionally, this network variable may also be transmitted as a heartbeat output on a regular basis as dictated by the Maximum Send Time (nciSndHrtBt) configuration value.

#### Default Service Type

# 7. Air Handling Unit - Optional Network Variables

## 7.1. Application Mode Input

network input sd\_string("HVAC\_AUTO \_\_\_\_\_ HVAC\_NIGHT\_PURGE\_\_HVAC\_FAN\_ONLY") SNVT\_hvac\_mode nviOpMode = HVAC\_NUL;

#### Purpose

This network variable input is used to coordinate the AHU Controller with any supervisory controller.

#### BMS Group

Control.

#### Valid Range

- 0 = HVAC\_AUTO (Digital BMS automatic ventilation request)
- 4 = HVAC\_NIGHT\_PURGE (Digital BMS nightcool request)
- 6 = HVAC\_OFF (No unit operation)
- 13 = HVAC\_ECONOMY (Digital BMS Holiday mode ventilation request)
- OxFF = HVAC\_NUL (invalid value, same as HVAC\_OFF. Enable control by the nviOccupancy input)

All other enumerations will not be handled.

#### Default Value

The default value is HVAC\_NUL. This value will be adopted at power-up and in case of not receiving an update within the specified receive heartbeat time.

#### **Configuration Considerations**

This network variable is subject to the receive heartbeat time, nciRcvHrtBt (if defined). If the nviOpMode is not updated from the LON® network within the defined amount of time, the input value will shift to the default value HVAC\_NUL.

# 7.2. Automatic Operation IT Setpoint

network input sd\_string("Automatic Operation IT setpoint") SNVT\_temp\_p nviInletTempStpt;

#### Purpose

This input network variable is used to allow the Digital BMS temperature to be changed via the network.

#### BMS Group

Control.

#### Valid Range

The valid range is 8°C to 40°C. The value 0x7FFF=+327.67°C will be handled as an invalid value.

#### Default Value

Default Value is 0x0000 (= 0,00°C). This value will be adopted at powerup.

This network variable input does not use the Receive Heartbeat function.

#### **Configuration Considerations**

None specified.

# 7.3. Occupancy Sensor Input

network input SNVT\_occupancy nviOccupancy = OC\_NUL;

### Purpose

This input network variable is used to indicate the presence of occupants in the controlled space. It is typically sent by an occupancy sensor. This input can be chosen instead of using the AHU Controller hardwired occupancy sensor.

The Automatic Start-Stop of the AHU is normally controlled by the nviOpMode. By setting the nviOpMode to the invalid value 'HVAC\_NUL', the Occupancy Sensor Input can be used to control the operation modes in between HVAC\_AUTO and HVAC\_OFF.

## BMS Group

Control.

#### Valid Range

- 0 = OC\_OCCUPIED: The occupancy sensor is indicating that there ARE occupants in the space.
- 1 = OC\_UNOCCUPIED: The occupancy sensor is indicating that there are NO occupants in the space.
- OxFF = OC\_NUL: This is the initial value after powerup and it remains until another value is received. It is used to indicate that this network variable input is invalid or unused. OC\_NUL is equivalent to OC\_UNOCCUPIED.

All other enumerations are not handled.

#### **Default Value**

The default value is OC\_NUL. This value will be adopted at power-up and in case of not receiving an update within the specified receive heartbeat time.

#### **Configuration Considerations**

This network variable is subject to the receive heartbeat time, nciRcvHrtBt (if defined). If the nviOccupancy is not updated from the LON® network within the defined amount of time, the input value will shift to the default value OC\_NUL.

# 7.4. Automatic Operation CO2 Input

network input sd\_string("Automatic Operation CO2 input") SNVT\_ppm nviCO2;

#### Purpose

This input network variable measures the space IAQ with either a CO2 or VOC sensor. Both sensors measure levels in PPM.

## BMS Group

Control.

#### Valid Range

The valid range is 0 to 5000 PPM. The value 0xFFFF = 65,535 will be handled as an invalid value.

Command the value 0 will disable CO2 control.

#### Default Value

Default Value is 0 (CO2 control disabled). This value will be adopted at power-up and in case of not receiving an update within the specified receive heartbeat time.

#### **Configuration Considerations**

This network variable is subject to the receive heartbeat time, nciRcvHrtBt (if defined). If the nviOpMode is not updated from the LON network within the defined amount of time, the input value will shift to the default value.

# 7.5. Actual Inlet Temperature Setpoint Output

network output sd\_string("Actual Inlet Temperature setpoint") SNVT\_temp\_p nvoEffTempSetpt;

#### Purpose

This output network variable is used to monitor the effective temperature setpoint which may depend on nvilnletTempStpt, nviOpMode, and any local setpoint adjustment.

## **BMS Group**

Control.

Typical Range

The typical range is 0°C to 100°C.

**Default Value** The default value of SNVT\_temp\_p.

**Configuration Considerations** None.

#### When Transmitted

The variable is transmitted immediately when its value has changed. Additionally, this network variable will also be transmitted as a heartbeat output on a regular basis as dictated by the Maximum Send Time (nciSndHrtBt) configuration value.

Default Service Type None specified.

# 7.6. Outside Air Temperature Output

network output sd\_string("Outside Temperature") SNVT\_temp\_p nvoOutsideTemp

### Purpose

This output network variable is used to monitor the outside air temperature if the unit controller provides a hardwired temperature sensor for this purpose.

#### BMS Group

Sensor.

# Typical Range

The typical range is -50°C to 100°C.

Default Value 0x0000.= 0,00°C

**Configuration Considerations** None.

#### When Transmitted

This variable is transmitted immediately when its value has changed. Additionally, this network variable will also be transmitted as a heartbeat output on a regular basis as dictated by the Maximum Send Time (nciSndHrtBt) configuration value.

#### Default Service Type

# 7.7. Evaporator Temperature Output

network output sd\_string("Evaporator Temperature") SNVT\_temp\_p nvoEvaporatTemp;

#### Purpose

This output network variable is used to monitor the temperature of the Evaporator air that leaves the room, if the unit controller provides a hardwired temperature sensor for this purpose.

#### **BMS** Group

Sensor.

*Typical Range* The typical range is -50°C to 100°C.

**Default Value** 0x0000.= 0,00°C

**Configuration Considerations** None.

#### When Transmitted

This variable is transmitted immediately when its value has changed. Additionally, this network variable will also be transmitted as a heartbeat output on a regular basis as dictated by the Maximum Send Time (nciSndHrtBt) configuration value.

**Default Service Type** There is no default service specified.

# 7.8. Exhaust Air Temperature Output

network output sd\_string("Exhaust Temperature at Ventilation Unit") SNVT temp p nvoExhaustTemp;

#### Purpose

This output network variable is used to monitor the temperature of the Exhaust air that leaves the AHU, if the unit controller provides a hardwired temperature sensor for this purpose.

# BMS Group

Sensor.

*Typical Range* The typical range is -50°C to 100°C.

Default Value 0x0000.= 0,00°C

**Configuration Considerations** None.

#### When Transmitted

This variable is transmitted immediately when its value has changed. Additionally, this network variable will also be transmitted as a heartbeat output on a regular basis as dictated by the Maximum Send Time (nciSndHrtBt) configuration value.

Default Service Type

# 7.9. Comfort Heater Percent Output

network output sd\_string("Comfort Heater
percent") SNVT\_lev\_percent nvoHeater;

#### Purpose

This output network variable reflects the current level of the primary heat output (if hardwired) or can be used to control a remote primary heat source (valve, compressor, etc.).

## **BMS Group**

Sysinfo.

## Typical Range

The valid range is 0% to 100% of primary heat capacity  $% \left( {{{\rm{D}}_{\rm{B}}}} \right)$ 

**Default Value** 0x0000; = 0,00%.

**Configuration Considerations** None.

#### When Transmitted

This variable is transmitted immediately when its value has changed. Additionally, this network variable will also be transmitted as a heartbeat output on a regular basis as dictated by the Maximum Send Time (nciSndHrtBt) configuration value.

#### Default Service Type

There is no default service specified.

# 7.10. Bypass Damper Percent Output

network output sd\_string("Bypass Damper percent") SNVT\_lev\_percent nvoBypassDamper;

#### Purpose

This output network variable reflects the current level of the Bypass Damper in percent.

#### BMS Group

Sensor.

## Typical Range

The valid range is 0% to 100% of primary heat capacity

# Default Value

0x0000; = 0,00%.

**Configuration Considerations** None.

#### When Transmitted

This variable is transmitted immediately when its value has changed. Additionally, this network variable will also be transmitted as a heartbeat output on a regular basis as dictated by the Maximum Send Time (nciSndHrtBt) configuration value.

#### Default Service Type

# 7.11. Comfort Cooling Percent Output

network output sd\_string("Comfort Cooling
percent") SNVT\_lev\_percent nvoCooling;

#### Purpose

This output network variable reflects the current level of the primary cool output (if hardwired), or can be used to control a remote mechanical cooling source.

# BMS Group

Sysinfo.

## Typical Range

The valid range is 0% to 100% of primary cool capacity

## Default Value

0x0000; = 0,00%.

**Configuration Considerations** None.

#### When Transmitted

This variable is transmitted immediately when its value has changed. Additionally, this network variable will also be transmitted as a heartbeat output on a regular basis as dictated by the Maximum Send Time (nciSndHrtBt) configuration value.

#### Default Service Type

There is no default service specified.

# 7.12. Pre Heater Percent Output

network output sd\_string("Pre Heater
percent") SNVT\_lev\_percent nvoPreHeater;

### Purpose

This output network variable reflects the current level of the Pre Heater output (if hardwired) or can be used to control a remote heat source (valve, compressor, etc.).

#### **BMS Group** Sysinfo.

Systino

## Typical Range

The valid range is 0% to 100% of primary heat capacity

# Default Value

0x0000; = 0,00%.

**Configuration Considerations** None.

#### When Transmitted

This variable is transmitted immediately when its value has changed. Additionally, this network variable will also be transmitted as a heartbeat output on a regular basis as dictated by the Maximum Send Time (nciSndHrtBt) configuration value.

#### Default Service Type

# 7.13. Supply Air Flow Output

network output sd\_string("Supply Flow")
SNVT\_flow nvoSupplyAirFlow;

#### Purpose

The output network variable is used to indicate the measured supply air flow.

#### **BMS Group**

Sysinfo.

#### Typical Range

The valid Range is 0 to 65,534 liters/sec. The value have to be multiplied by 3,6 to get it from L/sec -> M3/h

#### **Default Value**

0.

**Configuration Considerations** None.

#### When Transmitted

This variable is transmitted immediately when its value has changed. Additionally, this network variable will also be transmitted as a heartbeat output on a regular basis as dictated by the Maximum Send Time (nciSndHrtBt) configuration value.

#### Default Service Type

There is no default service specified.

# 7.14. Extraction Air Flow Output

network output sd\_string("Extraction
Flow") SNVT\_flow nvoExtAirFlow;

#### Purpose

The output network variable is used to indicate the measured Extraction air flow.

# BMS Group

Sysinfo.

#### Typical Range

The valid Range is 0 to 65,534 liters/sec. The value have to be multiplied by 3,6 to get it from L/sec -> M3/h

#### Default Value

0.

**Configuration Considerations** None.

#### When Transmitted

This variable is transmitted immediately when its value has changed. Additionally, this network variable will also be transmitted as a heartbeat output on a regular basis as dictated by the Maximum Send Time (nciSndHrtBt) configuration value.

#### Default Service Type

# 7.15. Total Power Consumption Output

network output sd\_string("Energy Meter
(KWh\_1)") SNVT\_elec\_kwh\_1 nvoTotalPwr;

#### Purpose

The output network variable is used to indicate the accumulated value for used electrical energy in Kilowatt hour.

#### BMS Group

Sysinfo.

#### Typical Range

The valid Range is 0 to 32767 KWh. With a resolution at 0,1.

#### **Default Value**

N/A.

#### **Configuration Considerations** None.

#### When Transmitted

This variable is transmitted immediately when its value has changed. Additionally, this network variable will also be transmitted as a heartbeat output on a regular basis as dictated by the Maximum Send Time (nciSndHrtBt) configuration value.

# Default Service Type

There is no default service specified.

8. Air Handling Unit - Configuration Properties

## 8.1. Send Heartbeat (Mandatory)

network input cp SCPTmaxSendTime
nciSndHrtBt;

### Purpose

This configuration property defines the maximum period of time that expires before the specified network variable outputs will automatically be updated.

It is only used for Network variable outputs which are specified for send heartbeat in the Network Variable Outputs Table.

#### Valid Range

The valid range is any value between 0.0 sec and 6,553.4 sec. Setting nciSndHrtBt = 0.0 disables the Send Heartbeat mechanism.

#### Default Value

0 (no automatic update).

**Configuration Requirements/Restrictions** None.

## SCPT Reference

SCPTmaxSendTime (49)

# 8.2. Occupancy Temperature Setpoints (Mandatory)

SCPTsetPnts cp\_family nciSetpoints;

#### Purpose

This configuration property is mandatory for the profile, but it is not used by the Airmaster controller.

Valid Range and Default Values N/A.

# 8.3. HVAC Unit-Type Indentifier (Mandatory)

const SCPThvacType cp\_family
cp\_info(device\_specific) nciHvacType;

#### Purpose

This configuration property is mandatory to indicate the primary application and equipment type for the space comfort controller type.

**Valid Range and Default Values** 5 = HVT\_UNIT\_VENT.

**Configuration Considerations** N/A.

SCPT Reference SCPThvacType (145)

N/A.

**Configuration Considerations** 

SCPT Reference SCPTsetPnts (60)

# 8.4. Location Label (Optional)

SCPTlocation cp\_family nciLocation;

#### Purpose

This configuration property can be used to provide the location of the functional block (or device), where p is the functional-block index. The above code declaration is for providing the location of the functional block.

#### Valid Range

Any NULL-terminated ASCII string up to 31 bytes of total length (including NULL). The string must be truncated if the length does not allow the 31st character to be the NULL (0x00).

#### Default Value

The default value is an ASCII string containing 31 NULLs (0x00).

#### Configuration Requirements/Restrictions

This CP has no modification restrictions (no\_restrictions). It can be modified at any time.

#### SCPT Reference

SCPTlocation (17)

# 8.5. High Room Temperature Hi Limit (Optional)

network input cp SCPThighLimTemp nciHiRoomTempHiL;

#### Purpose

This configuration property sets the High roomtemperature limit for the process.

#### **BMS Group**

Optional Setting.

#### Valid range

The valid range is 0°C to 50°C. (SNVT\_temp\_p)

#### **Default Value**

0x09c4.= 25,00°C. The initial value will be retrieved from the AHU controller and loaded into the variable after a reset of the node. An update of this variable will be maintained in the AHU controller non volatile memory as well.

#### Configuration Requirements/Restrictions

This CP has no modification restrictions (no\_restrictions). It can be modified at any time.

Since this CP can be overridden from the AHU controller, it is recommended to upload CP's to LNS tools (like e.g. LONMAKER® Browser) which normally will retrieve CP values from the database related from default template values.

## SCPT Reference

SCPThighLimTemp (123)

# 8.6. High Room Temperature Low Limit (Optional)

network input cp SCPTlowLimTemp nciHiRoomTempLwL;

#### Purpose

This configuration property sets the Low room-temperature limit for the process.

#### **BMS Group**

Optional Setting.

#### Valid range

The valid range is 0°C to 50°C. (SNVT\_temp\_p)

#### **Default Value**

0x0960.= 24,00°C. The initial value will be retrieved from the AHU controller and loaded into the variable after a reset of the node. An update of this variable will be maintained in the AHU controller non volatile memory as well.

#### Configuration Requirements/Restrictions

This CP has no modification restrictions (no\_restrictions). It can be modified at any time.

Since this CP can be overridden from the AHU controller, it is recommended to upload CP's to LNS tools (like e.g. LONMAKER® Browser) which normally will retrieve CP values from the database related from default template values.

#### SCPT Reference SCPThighLimTemp (123)

# 8.7. PIR Hold Time (Optional)

network input cp cp\_info(offline)
SCPTholdTime nciPirHoldTime;

#### Purpose

This configuration property defines the amount of time the PIR start signal continuous to be active after last non-presence detection (un-occupancy).

This configuration is used for both the 'Start via PIR' functionality in the LON<sup>®</sup> device AHU-controller, and for the PIR sensor function in the Airmaster controller when used with the hardwired PIR sensor.

It is recommended to set this property to a minimum value when the hardwired PIR sensor is used in the LON® network for other purpose.

#### BMS Group

Optional Setting.

#### Valid Range

The valid range is 0 to 6553 seconds (1:49 hour:min). (SNVT\_time\_sec)

#### Default Value

1800 seconds (00:30 hour:min) The initial value will be retrieved from the AHU controller and loaded into the variable after a reset of the node. An update of this variable will be maintained in the AHU controller non volatile memory as well.

#### Configuration Requirements/Restrictions

Since this CP can be overridden from the AHU controller, it is recommended to upload CP's to LNS tools (like e.g. LONMAKER® Browser) which normally will retrieve CP values from the database related from default template values.

SCPT Reference SCPTholdTime (91)

# 8.8. CO2 Limits (Optional)

network input cp SCPTlimitCO2
nciCO2Limit[2u];

#### Purpose

This configuration property defines an array of 2 CO2 limits.

Index[1], MinCO2 limit: CO2 concentration above this level, will cause a positive override of the flow

Index[2], MaxCO2 limit: When reach this CO2 level a maximum air flow is initiated.

**BMS Group** Optional Setting.

#### Valid Range

The valid range is 0 to 5000 ppm. (SNVT\_ppm)

#### **Default Value**

{500, 1000}. The initial values will be retrieved from the AHU controller and loaded into the variable after a reset of the node. An update of this variable will be maintained in the AHU controller non volatile memory as well.

#### **Configuration Requirements/Restrictions**

Since these CP's can be overridden from the AHU controller, it is recommended to upload CP's to LNS tools (like e.g. LONMAKER® Browser) which normally will retrieve CP values from the database related from default template values.

### SCPT Reference

SCPTlimitCO2 (42)

# 8.9. Receive Heartbeat (Optional)

network input cp SCPTmaxRcvTime
nciRcvHrtBt;

### Purpose

This configuration property is used to control the maximum time that elapses after the last update to a specified network variable input before the Space Comfort Controller starts to use its default values.

#### Valid Range

The valid range is any value between 0.0 sec and 6,553.4 sec. Setting nciRcvHrtBt = 0.0 disables the Receive Heartbeat mechanism.

#### Typical Default Value

0 (no failure detect)

Configuration Requirements/Restrictions None.

SCPT Reference SCPTmaxRcvTime (48)

# 9. Power-Up State

There is no immediate network action on Power-up State.

# 10. Boundary and Error Conditions

None specified.

# 11. Additional Considerations

None specified.

LONMARK® and the LONMARK Logo are managed, granted, and used by LONMARK® International under a license granted by Echelon Corporation. Neuron®, LONMARK®, and the LONMARK Logo are trademarks of Echelon Corporation registered in the United States and other countries.



Airmaster A/S Industrivej 59 DK-9600 Aars Tel.: +45 98 62 48 22 info@airmaster.dk www.airmaster.dk